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The S-matrix version of the Kohn variational method is used to obtain a new, more concise 
expression for the scattering matrix, one that has both esthetic and practical advantages over 
earlier ones that have been used. 

I wish to take the opportunity to extend my best wishes to Dr Rudo(f Zahradnik. It has been both 
a persollal and a scientific pleasure to have had the privilege of knowing him over the last ten years. 

It has recently been realized1 that the Kohn-variational approximation2 •3 to 
quantum mechanical scattering does not give equivalent results when it is applied 
to the K-matrix (i.e., real, standing wave boundary conditions) or to the S-matrix 
(i.e., complex, incoming/outgoing wave boundary conditions). Furthermore, the 
S-matrix version of the Kohn method is free of the "Kohn-anomalies,,3 that have 
plagued the commonly used K-matrix version and made it unsatisfactory for gen
eral use. The S-matrix version, on the other hand, has been seen to be well-behaved 
and efficient.l.4 It is particularly useful for quantum scattering calculations of chem
ical reactions,4 because the non-local (i.e., exchange) characterS -7 of reactive 
scattering negates the use of standard propagation methods8 .9 for solving the 
coupled-channel scattering equations. The important practical feature of the S-matrix 
version of the Kohn method is that it requires calculation of matrix elements only 
of the Hamiltonian operator itself, and not those involving a Green's function for 
a reference problem. 

In this paper I explore further the formal structure of the S-matrix version of the 
Kohn method and cast it in an even more useful form for practical scattering cal
culations. 

Equivalence of Variational Green's Function and S-matrix Kohn 

It is first useful to demonstrate explicitly that the variational approximation for the 
Green's function 10 •11 , G<+)(E) == (E + it; - Ht 1 , that was used before,1 is indeed 
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equivalent to the S-matrix version of the Kohn variational method.2 ,3 The specific 
equations below will all refer to the simple case of s-wave potential scattering, but 
they are readily generalizable to the interesting case of inelastic and reactive scattering 
(as in Ref. 1). 

The expression obtained by Miller and Jansen op de Haar1 for the S-matrix is 

N 

L (XlVII U ,> (u,IH - EI U,,»-l (UI,IVII X>], 
1,1'= 1 

(1) 

where X is the scattering wave function for the reference potential Vo, with asymptotic 
form 

x(r) ..., e i " sin (kr + '1)/V1/2 , (2) 

v = hk/(2nm), and '1 is the phase shift for Vo; VI is the residual potential (i.e., 
V == Vo + VI is the total potential). The basis functions {UI} for I = 2, ... , N are 
a real, square-integral set, while uI(r) is the special basis function which describes 
the outgoing wave boundary conditions inherent in G(+ '(E) (see Ref. 1); uI(r) is 
regular at r = 0 and must have the asymptotic form 

(3) 

and is usually chosen in the form 

(4) 

wherej(r) is a cut-off function to make ul(r) vanish at r = 0 (e.g.,f(r) = (1 - e- .... )). 
Also, all matrix elements in Eq. (1) and throughout the paper are without complex 
conjugation of the "bra" wavefunction; thus the matrix (uIIH - EI U,.) is a complex 
symmetric matrix. The notation (ulllul,>t l in Eq. (1) is short-hand for the (I, I') 
element of the matrix whose inverse is (ulllu,.). 

For present purposes it is useful to note that Eq. (1) can also be expressed equi
valentlyas 

N 

S = e2i"_ (8ni/h) ext {(XlVII X> + 2 L cl(u,IVII X> + 
1= 1 

N 

+ L c,cl,(uIIH - Elul'>} • 
1,1'= I 

(5) 

where ext { } means the extremum with respect to varying the coefficients {CI}' 
It is a trivial matter to show this equivalence: the equations 
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a 
-{ } = 0 
OCI 

(6) 

lead to linear equations for the coefficients which, when solved for and substituted 
into Eq. (5), lead to Eq. (1). It is also useful to note that Eq. (5) corresponds to the 
following scattering wavefunction, 

N 

I/I(r) = x(r) + L c/ulr) . (7) 
1=1 

Eqs (5)-(7) are now compared to the S-matrix version of the Kohn variational 
principle,1.2 which gives the S-matrix as 

S = ext {e2iq + 2ic1 - (81tijh) <I/IIH - EII/I>} , (8) 

where the trial wavefunction is given by Eq. (7), and ext { } again means extremum 
with respect to the coefficients {CI}' (The terms e2iq + 2ic1 in Eq. (8) constitute the 
"trial S-matrix" in the language of the Kohn method;2 i.e., the asymptotic form 
of the trial function of Eq. (7) is 

I/I(r) '" [eiqsin(kr + '1) + CI eikr]jv1/2 '" 

'" [ _e- ikr + eikr(e2iIJ + 2ic l )] (2ivl/2tl (9) 

which identifies (e2iq + 2icI) as the trial S-matrix.) Substituting Eq. (7) into (8) 
gives the explicit form 

S = e2iq - (81tijh) ext { - hcd(41t) + <xlH - EI X> + 
N N 

+ L CICI'<UIIH - EI U l .) + 2 L cl<ullH - EI X> + 
/,1'= 1 1=2 

(10) 

where the fact has been used that 

(11) 

for I ~ 2; this is true because ul(r) -+ 0 as r -+ 00 for I ~ 2. Eq. (11) is not true 
for 1 = 1, however, because ul(r) does not vanish at r -+ 00. Integration by parts, 
in fact, gives the result 
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and with x(r) and uI(r) as given above, this is 

(12) 

Using Eq. (2), and also the fact that 

(H - E) Ix) = VIII.) , (13) 

Eq. (10) becomes identical to Eq. (5) (which is equivalent to Eq. (1)), which was the 
goal of this Section, i.e., to show that the S-matrix version of the Kohn variational 
method, Eqs (7) and (8), is equivalent to Eq. (1), the result obtained before! from 
the variational approximation to the Green's function. Note that it is the surface 
term in Eq. (12) that cancels the "extra term", - hcd(41t), in Eq. (10). 

A New Expression for the S-matrix 

Having established the equivalence of the S-matrix version of the Kohn method to 
the variational approximation to G( +), I now use the Kohn method to obtain a new 
expression for the S-matrix. The motivation is to obtain a more symmetrical form 
for the S-matrix, and also a more computationally useful expression. 

The new result is obtained by using a trial function t/J and that treats incoming 
and outgoing waves on an equal footing, namely 

N 

t/J(r) = -uo(r) + I c/u/(r) , (14) 
/= 1 

where u I (r) is as before, Eq. (4), and uo(r) is a corresponding cut-off incoming wave, 

uo(r) = e-ikrr(r)jul/2 

= ut(r)* . 

(15a) 

(I5b) 

The functions {u/(r)}, I ;;:; 2, are, as before, short range, square-integrable functions 
that may be taken to be real. In terms of t/J of Eq. (14) the Kohn expression for the 
S-matrix is 

S = ext {c[ + (21tijh) <t/JIH - EI t/J)} , (I 6) 

where the constants appearing here are different from those of the previous section, 
e.g., Eq. (8), because the trial wavefunction of Eq. (14) is normalized differently. 

Apart from the symmetry between terms e+ ikr and e- ikr in the trial wavefunction 
of Eq. (14), it also has the advantage that one need not calculate the distorted wave-
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function X for some reference potential. The main reason for using a distorted 
function before/.4 rather than a plane wave x(r) -> sin (kr)jv 1/ 2 , is so that the 
classically forbidden region of a repulsive potential need not be spanned by the real 
basis functions {uI(r)}, 1 ;;:; 2. (If one used IjJ(r) of Eq. (7) with x(r) a plane wave, 
then the real basis {UI}, 1 ;;:; 2, would have to span the classically forbidden region 
in order to cancel the plane wave in this region, because the true wavefunction IjJ 
is zero there.) Other than this, there is little reason to use a distorted wave X. For the 
present trial wavefunction, Eq. (14), there is no need for the real basis to span the 
classically forbidden repulsive core, because Uo and u 1 vanish there by virtue of the 
cut-off functionJ(r). 

Returning'to Eqs (14)-(16), substitution of Eq. (14) into Eq. (16) gives 

S = (21tijh) ext {-ihcd(21t) + <uolH - EI uo> + 
N N 

+ I clc/,<u,IH - EI u/'> + 2 I cI<uIIH - EI uo> + 
1.1'= 1 1=2 

(17) 

where the fact has been used that 

(18) 

for I ;;:; 2. For 1 = 1, though, integration by parts gives 

(19) 

so that Eq. (I 7) becomes 
N 

S = (21tijh) ext {<uoIH - EI uo) + 2 I cI<ud H - EI U o> + 
1= 1 

N 

+ I C1CI'<ud H - EI UI'>} . 
1,1' = 1 

(20) 

Varying the coefficients {CI}, I = 1, ... , N, to extremize Eq. (20) leads to the usual 
linear equations which, when solved and put back into Eq. (20), gives the following 
variational result for the S-matrix, 

where 
s = (21tijh)(Mo,o - M~ 'M- 1 'Mo), 

Mo.o = <uolH - EI uo> 
(Mo)1 = <uIIH - EI uo> 
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The final result is obtained by noting that Eq. (21) is an example of the matrix parti
tioning identity; if a matrix M is partitioned into P and Q blocks, then this identity is 

(22) 

Identifying P with the one dimensional block I = 0, and Q with the block I = 1, ... 
... , N, Eq. (22) shows that Eq. (21) can also be written as 

(23) 

where here M is the (N + 1) dimensional matrix. 

M,.,. = (u,IH - EI u,,) (24a) 

J, /' = 0, ... , N, with the exception that 

(24b) 

Eqs (23) and (24) are the new, extremely concise expression for the S-matrix. It 
involves only matrix elements of (H - E) in the {u,}, I = 0, ... , N basis. There is 
no zeroth order S-matrix, as in Eq. (1), that refers to a reference problem, just as 
there is no distorted wavefunction for a reference. 

Though Eq. (23) is the most compact expression for the S-matrix, in practice it is 
probably best to separate the complex part of the matrix M from the real part. To 
invert M as needed in Eq. (23) one can thus partition M via Eq. (22) but where P 
is 1 = 0, 1 and Q is 1 = 2, ... , N. This gives 

(25) 

where 

N,." = M,./, - ~i' ~-1 • M" (26) 

for 1, l' = 0, 1, and where in Eq. (26) Mo and Ml are (N - 1) dimensional vectors 
and M an (N - 1) dimensional (real-valued) matrix 

(Mo), = <udH - EI uo) 

(Md, = <u,IH - EI Ul) 

(M)"" = <u,IH - EI u,,) 

(27a) 

(27b) 

(27c) 
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1, I' = 2, ... , N. One also notes the simplifying facts that 

Concluding Remarks 

Ml = M~ 

Ml,l = M~,o 

1m Ml,o = hj(41C) . 

1879 

(28a) 

(28b) 

(28c) 

Eqs (23) and (24) - or their partitioned form, Eqs (25)-(27) - provides an ex
tremely straight-forward computational procedure, and it is expected to be at least 
as efficient as the earlier calculations 1 ,4 based on (the multichannel version of) Eq. 
(1). 

In concluding it may be noted that distorted wave-like information can be included 
in these equations through the functions Uo and Ul = u~. Thus it is required only 
that these functions be regular (i.e., vanish) at r = 0, and have the asymptotic form 

(29) 

To include distorted wave-like in formation in the trial wavefunction one determines 
the (irregular) solutions for some reference potentive Vo(r) that have the asymptotic 
forms in Eq. (29). For example, one begins at large r with 

and integrates the reference Schrodinger equation inward. If uo(r) is the function so 
obtained, then 

uo{r) = uo{r)f(r) , (31) 

where f(r) is a cut-off function; the function u 1 (r) is then 

(32) 

It is also possible to employ this approach with a multi-channel reference. 12 - 14 
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computing facility, supported by National Science Foundation grant CHE84-16345. 
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